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Abstract. The dynamics of a thin liquid film falling down a uniformly heated wall is studied. The model intro-
duced by Kalliadasis et al. [J. Fluid Mech. 475 (2003) 377] for the same problem is revisited and its deficiencies,
namely the prediction of a critical Reynolds number with 20% error, cured. For the energy equation a high-order
Galerkin projection in terms of polynomial test functions is developed. It is shown that not only does this more
refined formulation correct the critical Reynolds number, but it also gives, with an appropriate expansion close to
criticality, the long-wave theory. Bifurcation diagrams for permanent solitary waves are constructed and compared
with the solution branches obtained from different models. It is shown that, in all cases, the long-wave theory
exhibits limit points and branch multiplicity, while the other models predict the continuing existence of solitary
waves. Time-dependent computations show that the free surface and interfacial temperature approach a train of
coherent structures that resemble the infinite-domain stationary solitary pulses.
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1. Introduction

An isothermal film falling down a planar substrate exhibits a rich variety of spatial and tem-
poral structures. It is a convectively unstable open-flow hydrodynamic system with a sequence
of wave transitions that begins with amplification of small-amplitude white noise at the inlet,
filtering of linear stability, secondary modulation instability that transforms the primary wave
field into a solitary pulse and inelastic pulse-pulse interaction. This evolution is driven by the
classical long-wave instability mode first observed in the pioneering experiments by Kapitza
and Kapitza [1]. This mode was analyzed in detail by Benjamin [2] who determined its
threshold and showed that a falling liquid film can only be destabilized with small but finite
inertia.

During the last three decades, the falling-film problem has been the subject of intensive
research by a large number of authors. The main advances include weakly nonlinear analyses
leading to model partial-differential equations (Kuramoto-Sivashinsky and Ginsburg-Landau
equations), strongly nonlinear analyses with construction of stationary periodic and solitary
wave solutions and theory of stability of two-dimensional waves to both two- and three-
dimensional disturbances as well as investigation of soliton-soliton and soliton-wave packet
interaction. Detailed reviews of the main developments on falling film instabilities and related
wave transitions are given in [3, 4].

The onset of the instability for a film falling down a uniformly heated wall was analyzed
in detail by Goussis and Kelly [5]. In this case the wall heating generates a temperature
distribution on the free surface which in turn induces surface-tension gradients that affect
the free surface and therefore the fluid flow. Goussis and Kelly performed a linear stability



178 P.M.J. Trevelyan and S. Kalliadasis

analysis based on Orr-Sommerfeld and linearized energy equations. They provided a detailed
numerical solution of the pertinent eigenvalue problem and demonstrated that in addition to
the Kapitza hydrodynamic mode of instability, the heated falling film is also subject to two
thermocapillary instability modes: a short-wave mode obtained first by Scriven and Sternling
[6] who considered the thermocapillary instability of an horizontal layer with a nondeformable
free surface and a long-wave mode obtained first by Pearson [7] who allowed the free surface
to deform.

The nonlinear stage of the instability for the heated falling film was investigated by Joo
et al. [8] who utilized the usual long-wave lubrication approximation to obtain an evolution
equation for the film thickness. In addition to Marangoni effects, they also included evap-
oration effects and long-range attractive intermolecular interactions. Joo et al. performed
time-dependent computations of their evolution equation and observed a number of phe-
nomena: wave breaking due to the surface-wave instability, thermocapillary instability which
acts strongly on surface depressions, evaporative instability (vapour recoil) which causes the
wave troughs to thin and finally film rupture. These authors also performed several numerical
experiments which indicate finite-time blow-up behavior -referred to as ‘super-exponential’
or ‘catastrophic’ behavior by the authors.

A detailed investigation of the long-wave instabilities on the surface of a film falling down
a uniformly heated wall was undertaken recently by Kalliadasis et al. [9]. Their analysis
was based on the model equations derived by Kalliadasis et al. [10] in their study of the
thermocapillary instability of a thin liquid film heated from below by a local heat source. We
shall subsequently refer to these equations as the ‘KKD model’. Its derivation was based on
the integral-boundary-layer (IBL) approximation of the Navier-Stokes/energy equations and
wall/free surface boundary conditions. For isothermal flows, this approach was introduced by
Shkadov [11, 12] in two dimensions and Demekhin and Shkadov [13] in three dimensions.
It combines the boundary-layer approximation of the Navier-Stokes equation assuming a
self-similar velocity profile and long waves on the interface with the Kármán-Pohlhausen
averaging method in boundary-layer theory. In two dimensions this approach results in a
system of two coupled nonlinear partial differential equations for the evolution of the film
thickness and flow rate in the streamwise direction. In the presence of thermal effects we have
an additional equation for the interfacial temperature distribution.

Kalliadasis et al. [9] examined systematically the linear stability properties of the KKD
model. In particular, they showed that the role of the Marangoni effect is to amplify the usual
downstream propagating surface hydrodynamic mode of instability for an isothermal film and
not to introduce a new unstable mode. The hydrodynamic mode is now characterized by an
unusually large growth rate for very thin films. The neutral stability curves as a function of the
relevant dimensionless groups, namely the Marangoni number, were found to be in qualitative
agreement with those obtained by the Goussis and Kelly [5] classical Orr-Sommerfeld linear
stability analysis. However, there was a difference between the neutral conditions obtained
from the KKD IBL model and the original ones in the Goussis and Kelly Orr-Sommerfeld
analysis with the maximum error introduced by KKD of the order of 20%. In addition, the
critical Reynolds number obtained from the KKD model had a 20% error compared to the
critical value obtained from Orr-Sommerfeld or the usual long-wave lubrication approxima-
tion – its important to note here that as was emphasized by Kalliadasis et al. [9] the long-wave
expansion is exact close to criticality. A similar discrepancy for the critical Reynolds number
predicted by IBL is also found for the isothermal falling film problem (see e.g. [4]).
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Kalliadasis et al. also examined in detail the solitary wave solutions of the KKD model
for both free surface and interfacial temperature. The solutions were contrasted with those
obtained from the Joo et al. [8] long-wave model. The two approaches gave similar solitary
wave solutions up to an O(1) Reynolds number above which the solitary wave solution branch
obtained by the Joo et al. equation is unrealistic with branch multiplicity and limit points. The
IBL KKD approximation on the other hand has no limit points and predicts the continuing
existence of solitary waves for all Reynolds numbers.

In this study we revisit the KKD model and we cure its deficiencies at the onset of the
instability. For the isothermal falling-film problem, the IBL approximation was recently cor-
rected by Ruyer-Quil and Manneville [14] who demonstrated that a simple Galerkin projection
for the velocity field with just one test function (the self-similar parabolic profile assumed by
Shkadov) and a weight function the test function itself, fully corrects the critical Reynolds
number. We demonstrate here that a similar approach for the velocity field also recovers the
correct critical Reynolds number for the problem of a film falling down a uniformly heated
wall.

For the energy equation, on the other hand, we employ two different approaches: (i) we
adopt the linear self-similar temperature distribution suggested by Kalliadasis et al. [9, 10].
The resulting energy equation along with the corrected momentum equation will be referred
to as the ‘improved KKD model’. The basic assumption for the distribution used in [9, 10]
was that the linear temperature profile obtained for a flat film persists when the interface is no
longer flat. However, this profile does not satisfy all boundary conditions for the temperature;
(ii) a more refined formulation based on a high order Galerkin projection in terms of polyno-
mial test functions. The temperature profile now satisfies all boundary conditions effectively
through a ‘tau’ method [15].

This results in a set of nonlinear partial differential equations for the amplitudes of the
temperature field coupled to the hydrodynamic equations for the film thickness and flow rate
in the streamwise direction. We will be referring to this system as the ‘TK1[m] model’ where
m is the number of modes for the temperature field.

We demonstrate that for this model a minimum of three amplitude equations for the tem-
perature is necessary to obtain with an appropriate gradient expansion the long-wave theory
close to criticality and hence to fully resolve the linear instability threshold. For the long-wave
theory we assume a large Péclect number so that we can include the convective heat transport
effects at a low relevant order. Hence, not only do we correct the critical Reynolds number but
we also obtain the full long-wave lubrication approximation close to criticality (recall that in
this regime the long-wave theory is exact).

We then construct numerically traveling-wave solutions of the solitary-wave type for both
the free surface and the interfacial temperature. We shall demonstrate that our numerical
analysis for the solitary waves is facilitated if the weight functions in the projection of the
energy equation are appropriately modified. This new model will be referred to as the ‘TK2[m]
model’ with m the number of modes for the temperature field. We contrast the solitary wave
solutions of the large-Péclet number long-wave theory, the improved KKD and TK2[1] mod-
els. We obtain bifurcation diagrams for the speed and maximum amplitude of the solitary
waves as a function of Reynolds number and for different values of the pertinent parameters,
namely Marangoni and Prandtl numbers.

The bifurcation diagrams are qualitatively similar to those obtained by Kalliadasis et al.
[9]: in all cases, the bifurcation diagrams for the large-Péclet-number long-wave theory exhibit
limit points and multiplicity with two branches, a lower branch and an upper branch. This



180 P.M.J. Trevelyan and S. Kalliadasis

lower branch and for small Reynolds numbers is in agreement with the other two models.
The agreement persists up to an O(1) Reynolds number above which the long-wave equation
does not predict the existence of solitary waves. The two other models, however, predict the
continuing existence of solitary waves for all Reynolds numbers.

Finally we perform time-dependent computations for the improved KKD model in the
region of moderate Reynolds and Péclet numbers. We demonstrate that the final result of
the evolution is a train of soliton-like coherent structures for both the free surface and the
interfacial temperature which interact indefinitely with each other and which resemble the
infinite-domain solitary pulses.

Our study should be relevant to a wide variety of technological applications. Indeed, thin
liquid films are often encountered in heat-transport processes in engineering applications as
a means to control fluxes and to protect surfaces: evaporators, condensers, heat exchangers
and heat pipes, emergency cooling of nuclear fuel rods to name but a few. All these industrial
processes involve heat transport from a hot wall to a film. The solitary waves on the surface
of the film play a central role in these processes as they significantly enhance heat transport
across the film.

The paper is organized as follows. In Section 2 we formulate the governing equations and
we introduce the relevant dimensionless groups. In Section 3 we develop a long-wave theory
for large Péclet numbers. The weighted residuals approach for the momentum equation is
given in Section 4 while the weighted residuals approach and high-order Galerkin projection
for the energy equation is given in Section 5. In Section 6 we construct numerically nonlinear
solutions of the solitary wave type for the long-wave theory, improved KKD and TK2[1]
models. In Section 7 we derive a model equation for small Reynolds numbers while in Section
8 we compare the different models to a finite-differences solution of the energy equation in
two dimensions. In Section 9 we present time-dependent computations of the improved KKD
model. Finally, a discussion and conclusions are given in Section 10.

2. Problem definition, scalings and governing equations

We consider a thin liquid film falling down a uniformly heated wall, as illustrated in Figure 1.
The wall forms an angle θ with the horizontal direction. The liquid has viscosity µ, density ρ,
constant pressure heat capacity cp and thermal conductivity κ. The thermal conductivity of the
solid substrate is assumed to be large so that it can be considered as a perfect heat conductor
maintained at temperature Tw. The ambient gas phase is air maintained at temperature Ta . The
liquid is assumed non-volatile so that evaporation effects can be neglected. It is also assumed
sufficiently thin so that buoyancy effects are neglected. The heating provided by the wall
induces a thermocapillary Marangoni effect at the interface which affects the interface and
therefore the fluid flow.

The governing equations, namely continuity, Navier-Stokes and the energy equation are:

∇ · u = 0, (1a)

ut + (u · ∇)u = −1

ρ
∇p + ν∇2u + g, (1b)

ρcp[Tt + (u · ∇)T ] = κ∇2T , (1c)
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Figure 1. Sketch of the profile geometry for a thin liquid film falling down an inclined heated wall. The wall is
maintained at temperature T = Tw and forms an angle θ with the horizontal direction. The surrounding gas phase
is maintained at temperature Ta(< Tw). At the interface y = h(x, t) the film looses heat according to Newton’s
law of cooling.

where u, p and T are the velocity, pressure and temperature of the fluid, respectively. g is the
gravitational acceleration and ν = µ/ρ is the kinematic viscosity of the liquid. On the wall
we have the usual boundary conditions for the velocity and temperature fields

u = 0, T = Tw (2)

while on the interface, y = h(x, t), we have the usual normal and tangential stress balances,
Newton’s law of cooling and the kinematic boundary condition:

pa + τ · n · n = −σ∇ · n, τ · n · t = ∇σ · t, κ∇T · n = −λ(T − Ta), ht + uhx = v (3)

where pa is the pressure of the ambient gas phase, σ is surface tension, n and t are unit normal
and tangential vectors on the interface, τ = −pI + 2µe the stress tensor, e the rate of strain
tensor given by eij = (∂ui/∂xj + ∂uj/∂xi)/2 and λ the heat-transfer coefficient describing
the rate of heat transport from the liquid to the ambient gas phase.

The full system of Navier-Stokes/ energy equations and wall/free-surface boundary condi-
tions has the trivial solution

h = h0, p = pa + ρ(h0 − y)g cos θ, u = (2h0y − y2)g sin θ/2ν, v = 0,

T = Tw − yλTw/(h0λ + κ),

where u and v are the x- and y-components of the velocity, respectively. Hence the trivial
solution is that of a flat film with a semi-parabolic velocity profile and a linear temperature
decay. We utilize this trivial solution to introduce the non-dimensionalization

x → �x, (y, h) → h0(y, h), u → u0u, v → h0

�
u0v, t → �

u0
t,

p → pa + ρh0pg sin θ, T → Ta + T (Tw − Ta),
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where u0 = h2
0g sin θ/2ν is the interfacial velocity of the flat film (Nusselt velocity) and � a

characteristic lengthscale in the streamwise direction. Temperature scales with Tw −Ta which
would be the control variable in an actual experiment and time scales with �/u0, the time an
interfacial fluid particle transverses a distance �.

In terms of these non-dimensional variables, the equations of motion and energy become

ux + vy = 0, (4a)

uyy + 2 = 2εpx + εRe(ut + uux + vuy) − ε2uxx, (4b)

εvyy − 2cotθ = 2py + ε2Re(vt + uvx + vvy) − ε3vxx, (4c)

Tyy = εPe(Tt + uTx + vTy) − ε2Txx, (4d)

where ε = h0/� the film parameter, Re = u0h0/ν the Reynolds number and Pe = RePr the
Péclet number with Pr = ρcpν/κ the Prandtl number. The thermocapillary effect is modelled
by using a linear approximation for the surface ension as a function of temperature,

σ = σ0 − γ(T − T0)

with σ0 the surface tension at the reference temperature T0 and γ > 0 for typical liquids. With
this approximation and using the above non-dimensionalization, the boundary conditions at
y = h(x, t) in Equation (3) become

p = −ε2(We − MaT )N− 3
2 hxx + εN−1(vy − hxuy + ε2(h2

xux − hxvx)) (5a)

uy + ε2(vx + 2hx(vy − ux) − h2
xuy) − ε4h2

xvx = −2εMa(Tx + hxTy)N
1
2 (5b)

(Ty − ε2hxTx)N
− 1

2 = −BiT (5c)

ht + uhx = v (5d)

where N =1+ε2h2
x , Ma = γ(Tw−Ta)/ρh2

0g sin θ is the Marangoni number, We=σ0/ρh2
0g sin θ

is the Weber number, and Bi = λh0/κ is the Biot number. Finally, the wall boundary conditions
become

u = v = 0, T = 1 (5e)

Equations (4) and (5) are the basic equations for the analysis to follow. Our system is gov-
erned by five dimensionless groups: Re, We, Ma, Pr and Bi. Hence, a complete investigation
over the entire parameter space would be an impossible task. However, as was pointed out by
Kalliadasis et al. [9], we can reduce the number of relevant dimensionless groups by fixing the
liquid and expressing our groups in terms of parameters which depend only on the physical
properties of the liquid. We then introduce

χ = gh3
0

ν2
, Ka = σ0

ρν4/3g1/3
, M = γ(Tw − Ta)

ρν4/3g1/3
, B = λν2/3

κg1/3
,

where χ, M and B are the modified Reynolds, Marangoni and Biot numbers, respectively and
Ka is the Kapitza number. We then have

Re = χ

2
sin θ, We = Ka

χ2/3 sin θ
, Ma = M

χ2/3 sin θ
, Bi = Bχ1/3.
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Notice now that the introduction of χ isolates the θ dependence of the Reynolds number.
Notice also that Ka, M and B are independent of h0 which is a flow control parameter and
depend only on the physical properties of the liquid phase, the heat-transfer coefficient of the
liquid-gas interface and the temperature difference Tw − Ta. Hence, for a given-liquid gas
system, the only relevant parameters are χ, M and θ while the vertical heated falling film
problem is a two-parameter system only. If the liquid phase is water at 25 ◦C, Ka � 2850 and
Pr � 7. It is also realistic to expect the gas to be a poor conductor and so the parameter B

should be small. For convenience we shall fix Ka = 3000 and in the absence of experimental
values for Biot numbers of liquid-gas interfaces we take B = 0·1 throughout this study.

3. Long-wave theory for large Péclet numbers

The complexity of the free-boundary problem in Equations (4) and (5) can be removed by
invoking a long-wave (lubrication) expansion for ε � 1. This allows an asymptotic reduction
of the governing equations and boundary conditions to a single nonlinear partial differential
equation of the evolution type formulated in terms of the local film thickness (see [16] for a
detailed review of long-wave theories). In the presence of Marangoni effects one typically
assumes Pe = O(1) and expands u up to O(ε) and T up to O(1). As a consequence the
convective heat transport effects are not retained. To include these effects one would have
to expand u up to O(ε2) and T up to O(ε) but these higher order corrections are rather lengthy.

Experiments for the problem of a falling film heated from below by a local heat source
[17], indicate that the Péclet number can be large. We expect that convection at large Péclet
numbers can lead to a downstream convective distortion of the free-surface temperature distri-
bution obtained by assuming an O(1) Péclet number. Here we assume the Péclet number to be
large so that the convective heat transport effects are included at a lower relevant order. More
specifically we take Pe = O(ε−n) for 0 < n < 1. We also assume Re = O(1), We = O(ε−2),
Ma = O(1) and Bi = O(1).

We then carry out an expansion in ε up to O(ε2−n) and we neglect terms of O(ε2) and higher.
This level of truncation allows the derivation of a relatively simple evolution equation for the
free surface as the O(ε2) terms are rather lengthy. The pressure and temperature field are both
expanded up to O(ε1−n) and hence terms of O(ε) and higher are omitted in these expansions.
At this level of truncation, the pressure is given by

p = cotθ(h − y) − ε2Wehxx (6)

and the temperature field by

T = 1 − Biy

1 + Bih
− εPeBihxy

3

60(1 + Bih)2
(3Biy2 − (5 + 15Bih)y + 20Bih2)

− εPeBih3hxy

30(1 + Bih)3
(10 − 5Bih − 4Bi2h2)

(7)

Details of the derivation are given in Appendix 1. The velocity components are given by
u = ψy and v = −ψx where the stream function ψ is found to be

ψ = y2
(
h − y

3

)
(1 + ε2Wehxxx − εhxcotθ) + εhhxy

2 Re

30
(20h3 − 5hy2 + y3)

+ε
MaBiy2

(1 + Bih)2
hx + ε2PeMaBiy2

(
(15 − 7Bih)h4hx

60(1 + Bih)3

)
x

.
(8)
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The free-surface evolution equation can then be easily obtained from the kinematic boundary
condition in (5d):

ht + 2h2hx + ε

[
8

15
Reh6hx − 2

3
h3hxcotθ + MaBih2hx

(1 + Bih)2
+ 2

3
ε2Weh3hxxx

]
x

+ ε2PeMaBi

[
h2

(
(15 − 7Bih)h4hx

60(1 + Bih)3

)
x

]
x

= 0.

(9)

The second term in this equation is the convective term due to mean flow, the third term
is due to inertia, the fourth term is due to the hydrostatic head in the direction perpendicular
to the substrate, the fifth term is due to the Marangoni effect, the sixth term is the usual
streamwise curvature gradient associated with surface tension and the seventh term originates
from the heat-transport convective terms. The first two terms are O(1), the third, fourth, fifth
and sixth terms are O(ε) and the seventh term is of O(ε2−n). It is important to emphasize that
in the absence of Marangoni effects, our free-surface evolution equation in (9) reduces to the
O(ε) evolution equation that has been derived and studied by a number of authors (see e.g.
[16]), Notice also that without the last term due to the convective heat transport effects, (9) is
identical to the Joo et al. [8] evolution equation (in the absence of the additional effects due
to evaporation and intermolecular forces considered by these authors),

It is now convenient to rescale the space and time coordinates as x = εRe1/3X and t =
εWe1/3� which yields

h� + 2h2hX + 2

3

[
h3(A(h)hX + B(h)h2

X + C(h)hXX + hXXX)
]
X

= 0, (10)

where A(h) = We−1/3( 4
5Reh3−cotθ+ 3

2 Ma Bi/h(1+Bih)2), B(h) = We−2/3Ma BiPeh2(30−
10Bih−7Bi2h2)/20(1+Bih)4 and C(h) = We−2/3Ma BiPeh3(15−7Bih)/40(1+Bih)3. We
shall refer to this model equation obtained from a long-wave expansion as the ‘LWE model’.
Notice that the requirements on the order of magnitude of our dimensionless parameters imply
that A ∼ ε2/3, and B ∼ C ∼ ε4/3−n. Recalling the requirement 0 < n < 1 for our long-wave
expansion, we obtain ε4/3 � B,C � ε1/3. Therefore, the relative size between A and B, C
can only be determined when we assign a specific value for n. For instance, the value n = 2/3
yields the distinguished limit A ∼ B ∼ C ∼ ε2/3 showing that the convective effects can be
equally important as inertia, hydrostatic head, capillary forces and Marangoni effects.

3.1. LINEAR STABILITY OF TRIVIAL SOLUTION

We now consider the stability of the trivial solution to infinitesimal perturbations in the form
of the normal mode h ∼ 1 + ĥ exp(λ� + ikX) which when substituted into the evolution
equation in (10) and linearizing for ĥ � 1 yields

λR = 2

3
k2(A − k2), (11a)

λI = −2k + 2

3
Ck3 (11b)

for the real and imaginary parts of the growth rate λ as a function of wavenumber k, with A ≡
A(1) and C ≡ C(1). Hence, the normal modes on the flat film h = 1 represent infinitesimal
disturbances traveling downstream with a velocity −λI /k = 2 − (2/3)Ck2.
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The real part of λ indicates that the onset of instability occurs at A = 0 which yields the
critical Reynolds number

Rec = 5

4
cotθ − 15Ma Bi

8(1 + Bi)2
(12)

while the maximum growing linear mode at criticality, has a wavenumber that is exactly zero.
Beyond onset, the neutral Wavenumber k0 with zero growth rate occurs at k = 0 and at
kc = A1/2 and hence LWE predicts two branches of the neutral curve. The dispersion curve
for the growth rate λR as a function of k is characterized by an unstable band 0 ≤ k ≤ kc

containing the maximum growing wavenumber kmax = (1/
√

2)kc with the largest growth
rate.

The critical condition in (12) indicates that increasing Ma (with Ma > 0) decreases Rec

and hence the Marangoni effect is destabilizing (stabilizing for Ma < 0). For Ma = 0 the
condition is identical to that obtained by Benjamin [2] while for Ma 
= 0 is exactly the same
with the critical condition obtained in the Goussis and Kelly [5] linear stability analysis based
on Orr-Sommerfeld and linearized energy equations. This is not surprising as LWE being a
regular perturbation expansion of the full Navier-Stokes should be exact close to criticality
(see also our discussion in the Introduction). Notice, however, that LWE predicts one mode
only, as opposed to three modes (downstream propagating surface mode, upstream propagat-
ing surface and downstream propagating Marangoni modes) obtained from the KKD model
in [9]. Moreover, LWE predicts two branches of the neutral curve for an inclined film, while
the study by Kalliadasis et al. [9] clearly indicates the existence of three neutral curves. On
the other hand, for sufficiently large M, Goussis and Kelly [5] obtain an additional neutral
curve associated with the formation of rolls below the interface. However, convective cells
and rolls cannot be captured by the KKD model and any IBL model for that matter since all
these models ignore the viscous terms in the streamwise direction compared to the viscous
terms in the direction perpendicular to the wall; see discussion in [9].

The long-wave expansion was developed to check that the integral-boundary-layer models
developed in the following sections provide the correct behaviour close to criticality. It is also
because of the presence of the convective heat transport terms in the integral-boundary-layer
models that we develop a long-wave theory to include these terms.

4. Weighted residuals approach: momentum equation

As we have already emphasized in the Introduction, despite its good performance in the non-
linear regime, the KKD model predicts the critical condition with a 20% error. The aim here
is not only to cure this discrepancy for the critical condition, but also develop higher order
models that will give, with an appropriate expansion close to criticality, the full long-wave
theory of the previous section.

The starting point of our analysis is to assume long waves in the streamwise direction and
neglect the second-order diffusive terms uxx and Txx of the Navier-Stokes/energy equations.
This assumption was also made by Kalliadasis et al. [10] and is effectively a boundary-layer
approximation of the Navier-Stokes/energy equations. Part of our analysis at the beginning of
this section parallels the works in [9, 10] and the reader is referred to these studies for further
details.

To leading order, the y-component of the equation of motion (4c) and normal stress balance
(5a) are py = −cotθ and p = −ε2Wehxx on y = h(x, t). Hence, we obtain the same leading-
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order pressure distribution as in Equation (6). Substituting now the expression for the pressure
in the x-component of the momentum equation (4b) and neglecting terms of O(ε2) and higher,
we have

uyy + 2 = 2εhxcotθ − 2ε3Wehxxx + εRe(ut + uux + vuy) (13)

subject to the no-slip boundary conditions in (5e) and the leading. order tangential stress
balance on the interface from (5b)

uy = −2εMaτx on y = h, (14)

where terms of O(ε2) and higher have been neglected and τ(x, t) denotes the free-surface
temperature distribution, i.e., τ ≡ T |y=h and τx ≡ (Tx + hxTy)|y=h.

Following Kalliadasis et al. [9, 10] we assume that the velocity profile beneath the film has
the self-similar form

u = 3
q

h

(
η − 1

2
η2

)
+ εMaτxh

(
η − 3

2
η2

)
, (15)

where

η = y

h(x, t)
and q =

∫ h

0
udy (16)

is the flow rate in the streamwise direction. The continuity equation in (4a) along with the
no slip condition, can be easily used to obtain v, v = ∫ y

0 uxdy′. For Ma = 0, (15) is the
profile introduced by Shkadov [11, 12]. Note that with the introduction of the flow rate q, the
kinematic boundary condition in (5d) can be written as

ht + qx = 0. (17)

The velocity distribution for u in (15) is the simplest possible profile which satisfies all bound-
ary conditions. We also note that this profile trivially satisfies the x-component of the equation
of motion at zero Reynolds and Marangoni numbers with q = 2h3/3.

For the isothermal falling-film problem, Ruyer-Quil and Manneville [14] developed high-
order IBL models using refined polynomial expansions for the velocity field (corresponding to
corrections of the Shkadov self-similar profile) and high-order weighted residual techniques;
the introduction of a test function for the velocity leads to a residual for the momentum
equation. In our case, the introduction of the test function (15) yields the following residual
for the x-component of the momentum Equation (13):

Ru = εRe(u(0)
t + u(0)u(0)

x + v(0)u(0)
y ) − uyy − 2 + 2εcotθ − 2ε3Wehxxx, (18)

where u(0) and v(0) denote the leading-order terms from u and v with v(0) = ∫ y

0 u(0)
x dy′,

since the Marangoni terms in (15) are of O(εMa) (due to the long-wave approximation) so
that they only contribute to the viscous-diffusion term ∂2/∂y2 and are neglected in the iner-
tial/convective terms which are of O(εRe). Following the study by Ruyer-Quil and Manneville
[14] for the isothermal film, the momentum residual can be minimized via a weighted residual
approach that would yield a constraint on q and hence a closure for the system:

< wu,Ru >= 0, (19)
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where wu is the weight function and the inner product is defined as < f, g >= ∫ 1
0 fgdη for

any two functions f and g with appropriate boundary conditions.
Specifying the weight function fixes the particular weighted-residual method being used.

For the isothermal falling-film problem, Ruyer-Quil and Manneville [14] showed that the
Kármán-Pohlhausen averaging method employed by Shkadov [11, 12] can be viewed as a
special weighted-residual method with wu ≡ 1. The same weight function was also adopted
by Kalliadasis et al. [10] in the presence of thermal effects. The inner product < 1, Ru >= 0
then yields

εRe

(
qt + 6

5

(
q2

h

)
x

)
+ 3q

h2
= 2h + 2ε3Wehhxxx − 2εhhxcotθ − 3εMaτx (20)

which is an evolution equation for q that involves the interfacial temperature τ which is
unknown at this point.

For the isothermal falling-film problem, Ruyer-Quil and Manneville [14] showed that a
Galerkin projection for the velocity field with just one test function (the self-similar profile
assumed by Shkadov [11, 12]) and with the weight function as the test function itself fully
corrects the critical Reynolds number obtained from the Shkadov IBL approximation. We
shall demonstrate that this is also the case in the presence of Marangoni effects, in fact it is
only necessary to take the weight function as the leading-order test function for the velocity,
namely wu ≡ η − 1

2η2. Substituting this in (19) and retaining only the dominant terms, we
have

6

5
εRe

(
qt + 17q

7h
qx − 9q2

7h2
hx

)
+ 3q

h2
= 2h + 2ε3Wehhxxx − 2εhhxcotθ − 3εMaτx (21)

which is the momentum equation used in the remainder of this study.

5. Weighted-residuals approach: energy equation

The boundary conditions for the temperature field are the wall condition in (5e) and the
leading-order Newton’s law of cooling in (5c)

Ty = −BiT on y = h (22)

where terms of O(ε2) and higher have been neglected. Like the momentum equation, the first
step for the energy equation would be the introduction of a self-similar profile. Kalliadasis
et al. [9] equivalently assumed the distribution

T = 1 + (τ − 1)η. (23)

By analogy with our analysis in the previous section, the introduction of a test function for the
temperature field yields a residual for the energy equation at O(ε)

RT = εPe(Tt + u(0)Tx + v(0)Ty) − Tyy, (24)

where again the O(εMa) terms of u and v contribute only to the thermal diffusion term ∂2/∂y2

and are neglected in the inertial/convective terms which are of O(εPe). The energy residual
can then be minimized from

< wT ,RT >= 0 (25)
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where wT is an appropriately chosen weight function.
The temperature distribution in (23) satisfies the wall boundary condition in (5e) but does

not satisfy the interfacial condition in (22) unlike the velocity profile in (15) which satisfies all
boundary conditions. However, as was pointed out in [9], by choosing wT ≡ η, the boundary
terms resulting from integrations by parts involve either Tη on η = 1 or T on η = 0. Thus, we
apply the boundary conditions prior to substituting the linear approximation in (23). Hence,
although (23) does not satisfy all boundary conditions, the averaged energy equation does.
The result is

τt + 27q

20h
τx + 7qx(τ − 1)

40h
+ 3

εPeh2
(τ(Bih + 1) − 1) = 0 (26)

Equations (20) and (26) along with the kinematic boundary condition in (17) constitute what
we referred to in the Introduction as the KKD model while Equations (21), (26) and (17)
constitute what we referred to in the Introduction as the improved KKD model.

As we have already emphasized, the improved KKD model fully corrects the critical Reyn-
olds number obtained from the KKD model. However, we also wish to be able to obtain close
to criticality the long-wave theory in Section 3. For this purpose a more refined treatment of the
temperature field is required. We then project the temperature field onto the set of polynomial
test functions

T (x, t,η) =
m+2∑
i=0

A(i−2)(x, t)ηi ,

where A(j) are the amplitudes of the expansion and m is an integer. The wall boundary con-
dition T = 1 on η = 0 requires A(−2) = 1. A Taylor-series expansion at y = 0 of the energy
equation in (4d) then shows that A(0) = 0 independently of the boundary conditions on the
free surface. This is also consistent with our long-wave theory in Section 3. Notice also that
unlike the isothermal film study by Ruyer-Quil and Manneville [14] where the amplitudes of
the polynomial expansion for the velocity field are assigned certain orders with respect to the
long-wave parameter ε, in our expansion for the temperature field the order of the amplitudes
is not specified.

Substituting the polynomial expansion for the temperature field in boundary condition (22)
or Tη = −BihT on η = 1 to eliminate A(−1), using A(−2) = 1, A(0) = 0 and eliminating A(1)

from the definition τ ≡ T |n=1 defines a projection onto the new set of test functions φi ,

T = φ0 + τφ1 +
m∑

i=2

A(i)φi , (27)

where φ0 = 1 − 3η/2 + η3/2, φ1 = (Bih + 3)η/2 − (Bih + 1)η3/2 and φi = (i − 1)η/2 −
(i + 1)η3/2 + ηi+2. Thus φ0(0)-1 = φ0(1) = φ0η

(1) = 0, φ1(0) = φ1(1) − 1 = φ1η
(1) +

Bih = 0 and for i ≥ 2 we have φi(0) = φi(1) = φiη(1) = 0. Hence, we have introduced τ

explicitly into our expansion and at the same time T satisfies Newton’s law of cooling (unlike
the simple expression in Equation (23)). In weighted-residuals terminology this is effectively
a ‘tau’ method [15]. Note also that all the φi’s are non-negative inside the open interval (0, 1).
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We now let wj denote our weight functions for the energy equation. The dominant terms
from the residuals < wj ,RT > = 0 are then denoted by rj and are given by

rj = εPe

(
α1jτt + β1jτx + γ1jτ + δj +

m∑
i=2

αijA
(i)
t + βij A

(i)
x + γijA

(i)

)
− �j − �1jτ

−
m∑

i=2
�ij A

(i),

(28)

where αij =< wj,φi >, βij =< wj, u
(0)φi >, γij =< wj,φit + u(0)φix + v(0)φiy >,

δj =< wj , φ0t
+ u(0)φ0x

+ v(0)φ0y
>, �j =< wj,φ0yy

>, and �ij =< wj,φiyy
>.

At this point it is convenient to use matrix notation, and so by introducing A = [τ, A(2) · · ·
A(m)]t we have

εPe

(
Mα At + Mβ Ax + Mγ + A + δ

)
= � + M�A (29)

where the matrices [Mα]ij = αij , [Mβ]ij = βij , [Mγ]ij = γij and [M�]ij = �ij are of

dimension m × m and the vectors [δ]j = δj and [�]j = �j are of dimension m × 1.

5.1. GALERKIN PROJECTION FOR THE ENERGY EQUATION

We take the weight functions in Equation (29) to be the same as the test functions in (27),
i.e., wj ≡ φj . This is then a Galerkin projection in weighted-residuals terminology. We now
demonstrate that the LWE model of Section 3 can be obtained with an appropriate expansion
of the system in (29). For this purpose we assign for Re, Pe, We, Ma and Bi the same orders of
magnitude with LWE. It is important to point out here that our averaged model in (29) has been
derived without overly restrictive stipulations on the order of the dimensionless groups (see
[9,10] for a discussion of lower/upper bounds on the order of magnitude of the dimensionless
parameters). For example, changing the order of Pe in (29) would lead to a different long-wave
expansion to that obtained in Section 3.

Let us now expand q and the amplitudes τ and A(i) as q = q0+εq1+O(ε2), τ = τ0+ε1−nτ1,
A(i) = A0i + ε1−nA1i where Pe = O(ε−n) with 0 < n < 1 and we truncate our expansions so
that terms of O(ε2) and higher in (21) are neglected while terms of O(ε) and higher in (29)
are neglected. Equation (21) then yields

q = 2

3
h3 + 15

8
εReh6hx − 2

3
h3hxcotθ − εMah2τx + 2

3
ε3Weh3hxxx, (30)

which is identical to the flow rate obtained from LWE. We note that at this point τx from
the averaged system in (29) remains undetermined, however, we shall demonstrate that it is
exactly the same with the one obtained from LWE.

The reason why Equation (21) corrects the critical condition is that Rec originates from the
inertia and Marangoni terms in the expression for the flow rate in (30). The inertia coefficient
in (30) is 15/8, i.e. exactly the same with LWE while a linear stability analysis shows that
the convective terms of the energy equation do not contribute to the critical condition (this is
effectively the reason why (12) is independent of Pr). Hence, it is always the term 1/(1+Bih)

obtained from the interfacial temperature distribution in the absence of convective effects, i.e.,
for εPe = 0 that contributes to Rec. Since all temperature profiles including the linear profile
in (23) give 1/(1 + Bih) in the absence of convective effects (see Equation (26)), (21) and



190 P.M.J. Trevelyan and S. Kalliadasis

Table 1. Summary of equations for the different
time-dependent models. m is the number of modes for the
temperature field.

LWE KKD Improved KKD TK1[m]

(17) (17) (17)

(10) (20) (21) (21)

(26) (26) (29) with wi = φi

therefore (30) predicts the same Rec with (12). On the other hand, a linear stability analysis of
(20) and (23) (effectively the KKD model) would give for Rec the same functional form with
(12) but with a coefficient of 1 instead of 5/4 in front of cot θ.

Substituting now q from Equation (30) in Equation (29), the ε1−n-expansions for the
temperature and utilizing the kinematic boundary condition we obtain

τ = 1

1 + Bih
+ εPeBih4hx

7Bih − 15

60(1 + Bih)3
,

A(2) = εPeBih4hx

3Bih + 1

12(1 + Bih)2
, A(3) = − εPeBi2h5hx

20(1 + Bih)2

with A(i) = 0 for i ≥ 4. When these expressions are substituted in Equation (27) they yield
Equation (7). Hence, we obtain the same interfacial temperature distribution leading to the
same long-wave expansion with Section 3.

Since now in order to obtain the long-wave theory of Section 3 from an appropriate ex-
pansion of our Galerkin system we need m ≥ 3 to O(εPe), we truncate our temperature
expansion at m = 3. A tedious algebraic calculation results in the amplitude equations given
in Appendix 2. Equations (21) and (29) along with the kinematic condition in (17) constitute
what we have already referred to in the Introduction as the TK1[m] model. This model satisfies
all temperature boundary conditions at any level of truncation. A summary of all models and
associated equations in given in Table 1.

6. Solitary waves

We now seek traveling-wave solutions propagating at a constant speed c. We introduce the
moving coordinate transformation Z = X − c� in the long-wave evolution equation (10)
with ∂/∂� = −c∂/∂Z for the waves to be stationary in the moving frame. The resulting
equation is then integrated once and we fix the integration constant by demanding h → 1 as
Z → ±∞. This gives

h′′′ = (h − 1)[3c − 2(h2 + h + 1)]
2h3

− A(h)h′ − B(h)h
′2 − C(h)h′′, (31)

where the primes denote differentiation with respect to Z. This equation together with the
boundary conditions h → 1 as Z → ±∞ and all the derivatives of h approaching zero as
Z → ±∞ define a nonlinear eigenvalue problem for the solitary wave speed c obtained from
LWE.



Wave dynamics on a thin-liquid film falling down a heated wall 191

Similarly, introducing the moving coordinate in the kinematic boundary condition in (17)
yields −chZ + qZ = 0. This can be integrated once and we fix the integration constant by
demanding h, q → 1,2/3 as Z → ±∞. This gives a relation between the flow rate and the
film thickness

q = 2

3
+ c(h − 1). (32)

We also introduce the moving coordinate transformation in (21) and (26) and after utilizing
(32) we obtain

h′′′ = (h − 1)[3c − 2(h2 + h + 1)]
2h3

+ h′ cotθ

We1/3 + 3Ma

2We1/3h
τ′+

3Reh′

35We1/3h3

(
c2h2 + ch(c − 2

3
) − (2 − 3c)2

) (33)

and

−cτ′ + 27

20h

[
2

3
+ c(h − 1)

]
τ′ + 7

40h
ch′(τ − 1) + 3We1/3

Peh2
[τ(Bih + 1) − 1] = 0. (34)

Equations (33) and (34) are subject to the boundary conditions h(±∞) = 1 and τ(±∞) =
1/(1 + Bi).

In the moving frame the system of equations in (29) becomes:

Pe

We1/3

(
MaAZ + MbA + d

)
= � + M�A, (35)

where [Ma]ij = aij and [Mb]ij = bij with aij = < wj, (u
(0) − c)φi >, bij = < wj, (u

(0) −
c)φiZ + εWe1/3v(0)φiy > and dj = < wj, (u

(0) − c)φ0Z
+ εWe1/3v(0)φ0y

>. Note that

εWe1/3v(0) ≡ − ∫ y

0 u
(0)
Z dy′ and so εWe1/3v(0) has no explicit ε and We dependence so that

Equation (35) is independent of ε (as it should). Equations (33) and (35) are subject to the
boundary conditions h(±∞) = 1, τ(±∞) = 1/(1 + Bi) and Ai(±∞) = 0.

The aim here is to construct the solitary wave solutions of the above models. Such solitary
waves correspond to homoclinic orbits of the above dynamical systems. We construct nu-
merically these solutions by using the continuation software AUTO97 [18]. For this purpose
the above equations are converted into systems of first-order ordinary differential equations.
However, when the Galerkin projection is employed for the temperature field, the system in
(35) can have a singular point somewhere in the domain, let us say at Z = Z0. This is due to the
fact that with the Galerkin projection the ij element of the matrix Ma is

∫ 1
0 (u(0)−c)φiφj dη. As

the interfacial waves become larger, the flow becomes faster so that the term u(0) − c which is
strictly negative for small amplitude waves, passes through zero and becomes positive. Note
that in the absence of Marangoni effects u(0) = c on the interface when h = 3 − (2/c).
Hence, as the height of the waves increases: the inner product

∫ 1
0 (u(0) − c)φiφj dη can in fact

change sign and become positive (recall that the φi’s are non-negative). We then infer that
the determinant of Ma can pass through zero for sufficiently large waves. This can be easily

illustrated for the simple cases m = 1 and m = 2 while our numerical computations show that
this is also the case for m ≥ 3. This singularity would then cause some formidable difficulties
in the numerical solution of (33) and (35) when it comes to matrix inversion.
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Despite the fact that (35) has a singular point at Z = Z0 one can still compute a Taylor
series expansion of A from (35) anywhere in the domain: simply substitute in (35) the Taylor
series for A about Z = Z0 and obtain a sequence of equations for the coefficients of the
expansion. This formal expansion procedure does not break down and hence A is analytic
throughout the domain. Following also the classification given by Bender and Orszag [19] the
singular point is an ‘irregular singular point’; in general, for such points some of the solutions
may not have an essential singularity and may even be analytic at these points.

One could then develop a more sophisticated numerical scheme to utilize a truncated
series expansion at Z = Z0 obtained analytically and evaluate the derivatives away from the
singularity. That would also require matching of the local analytical solution to the numerical
solution away from the singularity. However, we can bypass this more involved procedure by
appropriately modifying our projection approach. More specifically, we introduce the weight
functions

wj = (u(0) − c)φj (36)

so that the ij element of the coefficient of AZ in Equation (35), Ma , now becomes
∫ 1

0 (u(0) −
c)2φiφj dη. For m = 1 the determinant of Ma is just

∫ 1
0 (u(0) − c)2φ2

1dη > 0 while for m = 2

it is (
∫ 1

0 (u(0) − c)2φ2
1dη)(

∫ 1
0 (u(0) − c)2φ2

2dη) − (
∫ 1

0 (u(0) − c)2φ1φ2dη)2 > 0 from Schwarz’s
inequality. In fact, our computations indicate that the determinant remains positive for all m.
Hence, the weight functions in (36) are introduced for numerical convenience only, as they
convert (35) to a system without any singular points. This new system and (33) constitutes
what we have already referred to in the Introduction as the TK2[m] model.

An analysis similar to that in Section 5.1 now indicates that for m ≥ 3 the system of
equations obtained with the modified projectjon method yields, with an appropriate expansion,
the long-wave theory in the moving frame. This is not surprising as we also needed m ≥ 3
to obtain the long-wave theory from the time-dependent system in (29). Although 3 is the
minimum dimensionality for the modified system using the weights in (36) to fully resolve the
behavior of small amplitude waves, for convenience we shall investigate the model obtained
at the lower possible level of truncation, i.e. for m = 1. This yields the following equation for
the interfacial temperature

0 = Peτ′(3c − 2)2

(
5287

144
+ 45

4
Bih + 161

144
Bi2h2

)

+Peτ′c2h2

(
665

24
+ 175

24
Bih + 2

3
Bi2h2

)

−Pe(3c − 2)chτ′
(

8215

144
+ 1021

72
Bih + 163

144
Bi2h2

)

+PeBiτh′
(

(3c − 2)2

(
45

8
+ 161

144
Bih

)
+ Bich2

(
11

64
ch − 41

36
(3c − 2)

))

+Pech′(τ − 1)

(
301

192
ch − 61

6
(3c − 2)

)

+Pechh′
(

−4928τ − 1467

576
(3c − 2) + 101τ − 2

96
Bich

)

+11

8h
(τ(1 + Bih) − 1)((2 − 3c)(149 + 23Bih) + (111 + 13Bih)ch).

(37)
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Table 2. Summary of equations for the different traveling wave models. m is the
number of modes for the temperature field.

LWE Improved KKD TK1[m] TK2[1] 2D energy model

(31) (33) (33) (33) (33)

(34) (35) with wi = φi (37) (41)

Figure 2. Bifurcation diagrams for the stationary solitary pulses obtained from different models for Pr = 1 and
different values of M . In all our computations we take θ = π/2, Ka = 3000 and B = 0·1; (a) speed c as a function
of the modified Reynolds number χ; (b) maximum amplitude hmax as a function of modified Reynolds number χ.

The TK2[3] system of the 3 amplitude equations obtained using the modified weights in (36)
is a lot more complex than the system of the 3 amplitude equations in the moving frame
obtained from the Galerkin projection TK1[3]. Hence, the relative simplicity of the one-mode
approximation in (37) makes it an attractive prototype for numerical scrutiny.

We now contrast the solitary pulse solutions obtained from the LWE model in (31), the
improved KKD model in (33,34) and the one-mode TK2[1] model in (33,37). A summary
of all traveling-wave models is given in Table 2. In all our computations we take θ = π/2.
Figures 2 and 3 depict the solitary wave speed c and maximum amplitude hmax as a function
of the modified Reynolds number χ for Pr = 1 and Pr = 7, respectively and different values
of the modified Marangoni number, M. Note that for M = 0 both the improved KKD and
TK2[1] models give the same bifurcation diagrams as in this limit the energy equations in
(34) and (37) are decoupled from the momentum equation in (33).

These bifurcation diagrams are in qualitative agreement with those obtained by Kalliadasis
et al. [9] for the Joo et al. [8] long-wave equation and the KKD model. We first discuss the
branches obtained from the improved KKD and TK2[1] models. As χ → 0 both speed and
maximum amplitude of the solitary pulses tends to infinity for M > 0. This unusual behavior
was first pointed out by Kalliadasis et al. [9]. The same authors also emphasized that this
blow up is not a true singularity formation as other forces which would arrest the singularity
are present in the limit χ → 0. These are the long-range attractive van der Waals interactions
between the solid and the gas phase separated by the liquid phase. We note here that if the
film thickness tends to zero, the viscous dissipation uyy tends to infinity. The only way to
balance an infinite dissipation is via a curvature discontinuity (infinite hxxx – see e.g. Equation
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Figure 3. Bifurcation diagrams for the stationary solitary pulses obtained from different models for Pr = 7 and
different values of M ; (a) speed c as a function of χ; (b) maximum amplitude hmax as a function of χ.

(13)). Hence, in this region of small film thicknesses, the interface develops cusps, unless of
course van der Waals interactions with a negative Hamaker’s constant are included, i.e., for a
completely wetting fluid.

It is also important to point out that the limit χ → 0 can be achieved either with small
film thickness or large viscosity. In the latter case there would be no singularity formation
for small χ, instead all curves would start from the infinitesimal wave speed c = 2 as the
M = 0 curve does. Now a parameterization different to the one adopted at the end of Section
2 would be required. In this case one can show from a weakly nonlinear analysis of the LWE
model in (9) that dispersion (associated here with the convective-heat-transport term in (9))
can become large close to criticality leading to a Kawahara equation with large dispersion and
with solutions which approach Korteweg-de Vries solitons in this limit [20]. Here we assume
that χ changes through variation of the film thickness.

For sufficiently large χ the speed and maximum amplitude of our solitary pulses asymptote
towards limit values. In fact, as was pointed out by Kalliadasis et al. [9], we expect that the
different M curves should merge into a single curve (the one obtained from Equation (33)
for M = 0) in the region of large χ and hence large film thicknesses as in this region the
interfacial Marangoni effects are not important compared to the dominant inertia forces and
the influence of the temperature field on the hydrodynamics is small. Here we do not track the
solution branches beyond χ = 25. Besides, in this region of relatively large χ the capillary
forces are probably not strong enough to stabilize the large destabilizing inertia effects and
1D solitary pulses might develop instabilities in the transverse direction. Note that in all cases,
fixing Pr and increasing M increases c and hmax. On the other hand fixing M and increasing
Pr decreases c and hmax for moderate χ while c and hmax slightly increase as Pr increases in
the regions of small and larger χ.

We now examine the LWE model. Unlike the bifurcation diagrams for the improved KKD
and TK2[1] models which predict the continuing existence of solitary pulses for all χ, LWE
exhibits limit points and branch multiplicity with two branches, a lower branch and an upper
branch. These limit points occur at specific values of χ which depend on both M and Pr.
For the isothermal falling film problem, Pumir et al. [21] demonstrated that the long-wave
expansion exhibits a finite-time blow-up behavior for sufficiently large sets of smooth initial
data when this equation is integrated in time for Reynolds numbers larger than those corres-
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ponding to the turning points. Obviously this unrealistic behavior is related to the model’s
non-existence of solitary waves. A similar catastrophic behavior is also observed with our
LWE model in the presence of Marangoni effects.

7. Small film thicknesses

For small χ the lower branch obtained from LWE also blows up to infinity. This lower branch
is in agreement with the improved KKD and TK2[1] models. The agreement persists up to
an O(1) Reynolds number which is fairly close to the turning point. A similar agreement
was found by Kalliadasis et al. [9] for the KKD and Joo et al. [8] models. Kalliadasis et al.
demonstrated by performing a small χ expansion that the agreement between the KKD and
Joo et al. models is due to the fact that in the region of small film thicknesses, where the
Marangoni forces dominate over inertia forces, the two models reduce to the same equation
for the film thickness and hence in this limit both approximations are identical.

Here we demonstrate that all models, KKD, Joo et al., LWE, improved KKD and TK1[m]
are identical in this limit. From Pe = PrRe = (χ sin θ)/2, Pe → 0 as χ → 0. Hence, to
leading order, the convective terms in the heat transport equation can be neglected slaving the
interfacial temperature to the free-surface height in the form

τ = 1

1 + Bih
∼ 1 − Bχ1/3h + O(χ2/3). (38)

Similarly, to leading order, the inertia term can be neglected from the momentum equations in
(20) and (21). It is now obvious why the different approximations lead to the same equation
as χ → 0: all models for the interfacial temperature yield the expression in (38) while in the
absence of inertia all momentum equations are identical (recall that (21) corrects the critical
Reynolds number obtained from (20)). Substituting now (38) in the momentum equation gives

q ∼ 2h3

3
+ 2Kah3

3 sin θ
χ−2/3hxxx + MB

sin θ
χ−1/3h2hx, (39)

which is also identical to the LWE flow rate. This also implies that it is the inertia term (8/15)
Re h6hx which is responsible for the upper branch of LWE (even though this term yields the
exact critical condition).

Substituting now (39) in the kinematic boundary condition (17) yields the evolution equa-
tion

ht + 2h2hx +
(

2Kah3

3 sin θ
χ−2/3hxxx + MB

sin θ
χ−1/3h2hx

)
x

∼ 0,

which after rescaling space with χ−1/6
√

2Ka
3MB

and time with (3/2)χ−1/6
√

2Ka
3MB

gives the
evolution equation

ht +
(

h3 + h3

δ
hxxx + h2

δ
hx

)
x

∼ 0, (40a)

which contains a single parameter

δ = χ1/6 sin θ

√
23Ka

33M3B3
. (40b)
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Hence, in the limit of χ → 0, all models reduce to the single evolution equation in (40a) and
the behavior of the film depends on δ only and it is universal for all values of the governing
dimensionless groups. Note that the χ-expansion performed here should not be confused with
the ε-gradient expansion for fixed χ performed for the TK1[m] model to fully recover the
LWE model.

We should point out that the transformation to obtain (40a) shows that the nonlinear con-
vective term (h3)x and the two surface-tension forces balance as χ → 0. In this limit, both
capillary and Marangoni forces scale as 1/δ with δ → 0. For a falling film in the absence of
Marangoni effects, the destabilising inertia terms are vanishing in the limit χ → 0 while in
our case, the destabilising terms are interfacial forces and are still present as χ → 0. The
stabilising terms are also interfacial forces with exactly the same dependence on δ.

Figure 4 shows typical solitary wave shapes for both free surface and interfacial temper-
ature in the region of small χ obtained from the three models for M = 75. Note that only
part of the actual computational domain, which is [0, 150], is shown here. As expected, the
solitary pulses obtained from all three models are indistinguishable in this region. For example
changing Pr from 1 to 7 does not influence the pulses. The shape of the free-surface solitary
waves is qualitatively similar to the solitary pulses computed for the isothermal film and it
consists of a primary solitary hump with a gentle sloping back edge and a steep front edge
preceded by a series of small, decaying bow waves.

8. Finite-differences solution for the energy equation

In Figure 5 we compare, for the particular case M = 0, the interfacial temperature distribu-
tions obtained from the improved KKD and TK2[1] models with the solution of the energy
equation in (24)

Tηη = Pe

We1/3

((
3

2
qh(2η − η2) − ch2)

)
TZ + c

2
hhZη(η − 1)(η − 2)Tη

)
(41a)

subject to the boundary conditions for the temperature in (5e) and (22)

T = 1 on η = 0, Tη = −BihT on η = 1 (41b)

solved in 2D along with periodic boundary conditions in the z-direction and where q is given
in Equation (32). We shall refer to the system in (33) and (41) as the ‘2D energy model’.
The energy equation was solved numerically using an implicit finite-differencing scheme. For
M = 0, the energy equation is decoupled from the momentum equation in (33) which is then
used to obtain the free surface and corresponding flow field.

Clearly, for the moderate value χ = 5, the improved KKD, TK2[1] and 2D energy model
give quite similar interfacial-temperature distributions with the TK2[1] model being graphic-
ally indistinguishable to the finite differences solution. The agreement persists for the larger
value χ = 10 and Pr = 1. However for χ = 10 and Pr = 7 we notice a difference between the
improved KKD model and the 2D energy model and TK2[1] model. The difference increases
further as we increase the Reynolds number up to χ = 15. In this region of ‘large’ Reynolds
numbers, for Pr = 1, the TK2[1] model is in very good agreement with the 2D energy model
solution while for Pr = 7 a small difference between the two is observed. This is quite en-
couraging and implies that the TK2[1] model provides a good representation of the interfacial
temperature field even for ‘large’ Reynolds and Péclet numbers at least in the region of small
Marangoni numbers.
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Figure 4. Solitary pulses for the free surface and interfacial temperature with χ = 0·01 and M = 75. Pr = 1 in
(a) and (b) and Pr = 7 in (c) and (d).

One way to compute the temperature field for M 
= 0 would be to set up an iterative
scheme coupled with a domain perturbation approach, however, this was not done here. It is
important to emphasize that even the simple equation in (41) is computationally much more
demanding than Equations (34) and (37). Hence, from both the computational and analytical
point of view, dealing with sets of partial differential equations for interfacial quantities and
of reduced spatial dimension (1 in (34) and (37) instead of 2 in (41)) is much more attractive.
At the same time the models in (34) and (37) retain the most relevant physical features of
the problem and hence they can contribute to the understanding of the dynamics of the film
without resorting to a numerical study of the full Navier-Stokes/energy equations.

Figure 6 depicts typical solitary waves obtained from all three models for the moderate
value χ = 5 and two different Prandtl numbers, Pr = 1 and Pr = 7, for M = 30. For the ‘small’
value Pr = 1 all three approaches give similar results for both free surface and interfacial
temperature. However, by increasing the Prandtl number to the ‘large’ value Pr = 7, we notice
a significant difference between LWE and the other two models which give similar solitary
pulses. This difference is due to the fact that increasing the Prandtl number increases the
vertical heat flux. This flux is not represented properly by LWE despite the fact that it has



198 P.M.J. Trevelyan and S. Kalliadasis

Figure 5. Comparison of the interfacial temperature distribution obtained from the improved KKD and TK2[1]
models with that obtained from the energy equation in (41) for M = 0; (a) Pr = 1, χ = 5; (b) Pr = 7, χ = 5; (c)
Pr = 1, χ = 10; (d) Pr = 7, χ = 10; (e) Pr = 1, χ = 15; (f) Pr = 7, χ = 15.
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Figure 6. Free surface and interfacial temperature obtained from LWE, improved KKD and TK2[1] models for
χ = 5 and M = 30. Pr = 1 in (a) and (b) and Pr = 7 in (c) and (d).

been derived based on a large Peclet number assumption in order to include the convective
heat transport effects at a low relevant order.

Figure 7 shows typical solitary pulses for the ‘large’ value χ = 15, M = 75 and two
different Prandtl numbers, Pr = 1 and Pr = 7. We observe a divergence between the models as
Pr increases. The interfacial temperature of the improved KKD model is dampened when Pr
increases while the TK2[1] model gives a much larger variation for the interfacial temperature
with the peak of the wave being cooler than that predicted by the improved KKD model.
A comparison with Figures 4–6 shows that increasing χ increases the amplitude of the bow
waves in front of the primary hump for both free surface and interfacial temperature pulses.
This is simply due to the fact that increasing χ increases energy dissipation.

Figure 8 depicts the streamlines and isotherms at χ = 13, Pr = 7 and two different values
of M, M = 0 (Figures 8(a–d) and M = 30 (Figures 8(e,f)). For M = 0, the isotherms
obtained from the TK2[1] model are close to the isotherms obtained from the 2D energy
model while a significant difference between the improved KKD and 2D energy models is
observed. The minimum of the temperature obtained from the TK2[1] model (∼0·65) is in
excellent agreement with the minimum obtained from the 2D energy model (∼0·66). This



200 P.M.J. Trevelyan and S. Kalliadasis

Figure 7. Free surface and interfacial temperature obtained from the improved KKD and TK2[1] models for
χ = 15 and M = 75. Pr = 1 in (a) and (b) and Pr = 7 in (c) and (d).

minimum always appears close to the peak of the wave as this is the area further away from
the wall and hence the coldest area in the wave. The improved KKD model predicts a hotter
peak with a temperature ∼0·77. Note also that a similar computation for smaller Pr and χ

values shows that the isotherms are nearly aligned with the wall as expected since for small
Péclet numbers the temperature field is nearly a linear function of y. For the ‘large’ values of
χ and Pr used here, the isotherms are not aligned with the wall and are deflected upwards due
to the motion of the fluid under the wave crest.

For M = 30, Figures 8(e,f) show that the Marangoni effect now enhances the speed and
amplitude of the solitary waves. As a consequence, for the particular values chosen here, a
clockwise recirculation zone forms under the wave crest. The fluid is effectively pushed by
the thermo capillary Marangoni stresses from the back of the wave to the front. Now the
solitary waves transport mass as the fluid in the solitary hump is trapped. Such recirculation
zones are of paramount significance in mass transport applications.
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Figure 8. Streamlines and isotherms for χ = 13 and Pr = 7. (a) and (e) show streamlines obtained from the
TK2[1] model for M = 0 and M = 30, respectively. The corresponding wave velocities are c = 4·24 and
c = 4·81. (d) and (f) show the isotherms from the TK2[1] model for M = 0 and M = 30, respectively. (b) and
(c) are isotherms at M = 0 of the 2D energy model and the improved KKD model, respectively. The isotherms in
(b) and (d) are uniformly separated by temperature intervals of 0·025, from 1 to 0·675. The isotherms in (c) are
uniformly separated by temperature intervals of 0·02, from 1 to 0·78. Finally, the isotherms in (f) are uniformly
separated by intervals of 0·03, from 1 to 0·61.

9. Evolution toward solitary waves

The simplicity of the time-dependent improved KKD model in Equations (17), (21) and (26)
allows us to address one important issue: what is the spatial-temporal evolution of our system.
In addition, for the parameter values chosen here the stationary solitary wave solutions of the
improved KKD model are close to those obtained from the TK2[1] model suggesting a similar
time-dependent behavior.
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Figure 9. Time evolution for the free surface in (a,c) and interfacial temperature in (b,d) in an extended domain
obtained from the improved KKD model for X = 5 and M = 30. Pr = 1 in (a,b) and the coordinate system
is moving with velocity 2. Pr = 7 in (c,d) and the coordinate system is moving with velocity 2·084. Successive
curves are separated by �� = 103 with � ∈ [0,2·5 × 104].

For our computations we employed a Crank-Nicolson-type implicit scheme with the spatial
derivatives approximated by central differences and with dynamic time step adjustment. We
impose periodic boundary conditions over a finite domain much larger than the maximum
growing wavelength predicted by linear stability. The computations are performed in the
moving frame Z = (x − 2t)/(εWe1/3).

Some typical time evolutions are shown in Figures 9 and 10. Within the inception region
the wave amplitude grows exponentially in time, as predicted by linear stability. Immediately
beyond it, the waves begin to steepen in front and develop a back shoulder, signifying a weakly
nonlinear excitation of an overtone. The amplitude modulation still persists, however, the
larger waves now begin to accelerate, they collide with the smaller waves in front of them
and eventually overtake them. This coalescence process is evident for both free surface and
interfacial temperature. The final result of the evolution is a train of soliton-like coherent
structures with almost the same amplitude and which interact indefinitely with each other like
in soliton-soliton elastic collision. These coherent structures possess a gently sloping back
egde and a steep front edge preceded by some small bow waves and are reminiscent of the
solitary-wave coherent structures observed in the bifurcation diagrams of Figures 2, 3 for the
stationary solitary wave solutions for free surface and interfacial temperature.
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Figure 10. Time evolution for the free surface in (a,c) and interfacial temperature in (b,d) in an extended domain
obtained from the improved KKD model for χ = 10 and M = 30. Pr = 1 in (a, b) and the coordinate system is
moving with velocity 2·176. Pr = 7 in (c,d) and the coordinate system is moving with velocity 2·127. Successive
curves are separated by �� = 2 × 102 with � ∈ [0, 5 × 103]. Note that the actual vertical scale is approximately
twice as big as that in Figure 9 so that the amplitudes of the waves in Figure 10 are actually bigger than those in
Figure 9.

We have also performed computations for a wider range of the relevant dimensionless
groups. These numerical experiments show that increasing χ for fixed Pr increases the av-
erage amplitude for both free-surface and interfacial temperature waves. On the other hand,
increasing Pr sufficiently for fixed χ organizes the system from a train of strongly interacting
solitary waves to a train of weakly interacting solitary waves. Further increases of Pr increase
the characteristic wavelength of the solitary waves leading to solitary wave trains separated
by relatively flat regions. These observations are illustrated in Figures 9 and 10.

Finally, we should point out that unlike LWE which can exhibit finite-time blow up beha-
vior, our models are quite robust and they do not exhibit any singularity formation. This is
illustrated in Figure 10 with values of χ = 10, and M = 30 for which Figures 2 and 3 show
that LWE does not have any solitary-wave solutions.

10. Conclusion

We have analyzed the dynamics of a thin liquid film falling down a uniformly heated wall.
The heat provided by the wall sets up surface tension gradients which induce thermocapillary



204 P.M.J. Trevelyan and S. Kalliadasis

Marangoni effects which in turn cause a Marangoni instability which interacts with the usual
hydrodynamic mode of instability for an isothermal film.

We revisited the KKD model developed for this flow by Kalliadasis et al. [10] and we
showed that a simple Galerkin projection for the velocity field with just one test function
(a self-similar parabolic profile) and a weight function, taken to be the test function itself,
fully corrects the critical Reynolds number obtained from the KKD model. The corrected
momentum equation along with the linear self-similar temperature distribution suggested by
Kalliadasis et al. [10] constitute the ‘improved KKD model’. In addition, a long-wave expan-
sion of the equations of motion and free-surface boundary conditions for large Péclet numbers
leads to the model equation we referred to as the ‘LWE model’.

However, the linear temperature distribution in the improved KKD model does not satisfy
all boundary conditions and hence it is not expected to be a very accurate representation of
the temperature profile. We then developed a more refined formulation based on a high-order
Galerkin projection in terms of polynomial test functions. The temperature distribution is
such that it now satisfies all boundary conditions. The resulting amplitude equations for the
temperature along with the corrected momentum equation constitute the ‘TK1[m] model’.
We showed that not only does this model correct the deficiencies of the KKD model, namely
predicting the critical Reynolds number with a 20% error, but it also gives the LWE model
with an appropriate gradient expansion close to criticality and hence it can accurately describe
the dynamics of the film in this region. For this purpose we need at least three amplitude
equations for the temperature field. We then truncated the TK1[m] model at m = 3 and we
offerred a reduced three-amplitude equations model which fully resolves the dynamics close
to criticality.

We subsequently focused on the nonlinear stage of the instability with particular emphasis
on single-hump solitary waves. We showed that the numerical analysis for the solitary waves
is facilitated if the weight functions for the energy equation were appropriately modified. This
model was referred to as the ‘TK2[m] model’. We contrasted the solitary pulse solutions ob-
tained from the LWE model with those obtained from the improved KKD and TK2[1] models
(for simplicity we restricted ourselves to m = 1 for the TK2[m] model). We demonstrated
that in all cases the solitary wave solution branch obtained from LWE is unrealistic with limit
points and branch multiplicity with two branches, a lower branch and an upper branch.

This behavior is similar to what has been observed with isothermal films, where the turning
points and non-existence of solitary pulse solutions of the long-wave expansion have been
associated with a finite-time blow up behavior, when this equation is integrated numerically
in the region where solitary waves do not exist.

The improved KKD and TK2[1] models on the other hand predict the continuing existence
of solitary waves for all values of the Reynolds number. These models are then expected
to be robust in time-dependent computations. Such computations with the improved KKD
model show that for large times the free surface and interfacial temperature approach a train
of coherent structures which resemble the infinite-domain stationary solitary pulses obtained
in our bifurcation diagrams.

Finally, there are a number of interesting questions related to the analysis presented here.
For example, it would be interesting to undertake a detailed numerical study in the region of
small χ and in the presence of intermolecular forces. It would also be interesting to extend the
present analysis to other situations and related problems where Marangoni effects are present,
e.g. thin films in the presence of surface active agents (surfactants) that alter the surface tension
(solutal Marangoni effect). Another interesting problem is the dynamics of a thin film in the
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presence of an exothermic chemical reaction taking place in the film. In this case the heat
released by the reaction sets up surface-tension gradients that induce thermocapillary stresses
on the free surface, thus affecting the evolution of the film. Trevelyan et al. analyzed this
problem with a long-wave expansion of the equations of motion and associated wall/free-
surface boundary conditions [22]. This is a system with a full feedback mechanism. We are
currently investigating the dynamics of a falling film in the presence of chemical reactions by
using a high-order Galerkin projection similar to the one employed here [23, 24]. A related
system would be a thin film in the presence of surfactants depleted/produced by a chemical
reaction. Now the (isothermal) chemical reaction changes the surfactant concentration and this
alters the rate by which the surface tension changes as a function of surfactant concentration
which in turn affects the interface which then changes the rate of reaction (feedback).

The analysis itself can be refined further by including the second-order dissipative effects
associated with both the momentum and energy equations neglected here. Such effects have
been shown to modify the amplitude of the front-running capillary waves in isothermal films
[14]. This second-order model would require a more detailed description of the velocity field
which would not be limited to remain parabolic as in this study. We shall examine this and
related problems in a future paper.
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Appendix 1: Derivation of the long-wave evolution equation

The LWE is obtained by expanding Equations (4) and (5) for ε � 1. More specifically, we
expand our variables in the forms u ∼ u0 + εu1 + ε(2−n)u2, v ∼ v0 + εv1 + ε(2−n)v2 and
p ∼ p0 + ε(1−n)p1 and T ∼ T0 + ε(1−n)T1. We note that the continuity equation in (4a),
ux +vy = 0 and the no-slip boundary condition in (5e), v = 0 on y = 0, can be used to obtain
v0, v1 and v2 from u0, u1 and u2, respectively. In what follows we assume that Bi, Re, Ma, εn

Pe and ε2 We are all O(1). The leading order terms of the relevant equations then are given by:

(4b)0 : u0yy
= −2

(5e)0 : u0 = 0 on y = 0
(5b)0 : u0y

= u0 on y = h

(4c)0 : p0y
+ cotθ = 0

(5a)0 : p0 = −ε2Wehxx on y = h

(4d)0 : T0yy
= 0

(5e)0 : T0 = 1 on y = 0
(5c)0 : T0y

= −BiT0 on y = h

These yield

u0 = 2hy − y2, p0 = (h − y)cotθ − ε2Wehxx and T0 = 1 − Biy

(1 + Bih)
.
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The O(ε) terms of the equations are given by:

(4b)1 : u1yy
= 2p0x

+ Re(u0t
+ u0u0x

+ v0u0y
)

(5e)1 : u1 = 0 on y = 0
(5b)1 : u1y

= −2Ma(T0x
+ hT0y

) on y = h

and the O(ε1−n) terms of the equation are

(4c)1−n : p1y
= 0

(5a)1−n : p1 = 0 on y = h

(4d)1−n : T1yy
= εnPe(T0t

+ u0T0x
+ v0T0y

(5e)1−n : T1 = 0 on y = 0
(5c)1−n : T1y

= −BiT1 on y = h

These yield

u1 = (2hy − y2)(ε2Wehxxx − hxcotθ + 2MaBiyhx

1 + Bih)2
+

Reht

(
y3

3
− hy

)
+ Rehhxy

(
y3

6
− 2h3

3

)
,

p1 = 0 and T1 = εnPeBi2ht

6(1 + Bih)2

(
y3 − (3 + Bih)

(1 + Bih)
h2y

)

− εnPeBihx

60(1 + Bih)2

(
3Biy5 − 5(3Bih + 1)y4 + (20 + 50Bih + 12Bi2h2

(1 + Bih)
h3y

)
.

The O(ε2−n) terms of the equations are given by:

(4b)2−n : u2yy
= 2p1x

(5e)2−n : u2 = 0 on y = 0
(5b)2−n : u2y

= −2Ma(T1x
+ hxT1y

) on y = h.

These yield

u2 = εnPeMaBiy

(
(5 + 11Bih)h4hx

10(1 + Bih)3
+ 2Bih3ht

3(1 + Bih)3

)
x

.

Now that the flow field has been determined at the desired level of approximation, we
turn to the kinematic boundary condition for the free surface (5d), which can be written as
ht + [ψ(h)]x = 0 where ψ = ∫ y

0 udy. This gives the evolution equation:

ht + 2h2hx + ε

[
− 3

10
Reh6hx − 5

12
Reh4ht − 2

3
h3hxcotθ + MaBih2hx

(1+Bih)2
+ 2

3
ε2Weh3hxxx

]
x

+ε2PeMaBi

[
h2

(
(5 + 11Bih)h4hx

20(1 + Bih)3
+ Bih3ht

3(1 + Bih)3

)
x

]
x

= 0.

As our expansion is truncated up to and including terms of O(ε2−n) we do not require any
O(ε2) terms at this level of approximation and so we can use the leading-order form of the
above evolution equation, ht ∼ −2h2hx , to remove ht from the higher-order terms of the
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evolution equation. The final equation is (9). Similarly, using the leading-order form of the
evolution equation we can eliminate the explicit time derivative of h from u1 and T1 and u2.
This gives:

u1 = (2hy − y2)(ε2Wehxxx − hxcotθ) − 2MaBiyhx

(1 + Bih)2
+ 1

6
Rehhxy(8h3 − 4hy2 + y3),

T1 = εnPeBihxy
3

(1 + Bih)2

(
−y2

20
+ (1 + 3Bih)y

12
− Bih2

3

)
− εnPeBihxh

3y

30(1 + Bih)3
(10 − 5Bih − 4Bi2h2)

and

u2 = εnPeMaBiy

(
(15 − 7Bih)h4hx

30(1 + Bih)3

)
x

.

Appendix 2: Three-mode Galerkin model for the temperature field

The Galerkin projection in Section 5 truncated at m = 3 yields the following amplitude
equations for τ, A(2) and A(3):

0 = εPeh

(
51 + 18Bih + 2Bi2h2

3
τt + 75 + 19Bih

48
A

(2)
t + 32 + 8Bih

9
A

(3)
t

)

+ εPeq

(
2137 + 698Bih + 73Bi2h2

96
τx + 83 + 20Bih

48
A(2)

x + 2107 + 501Bih

528
A(3)

x

)

− εPeqx

(
454 + 119Bih

192
Bihτ + 91 + 9Bih

192
A(2) + 1985 + 247Bih

3168
A(3)

)

+ εPe

(
505qx

192
(τ − 1) + 698 + 146Bih

192
Biτqhx − 133qxBih

192

)

+ 7

h
(6 + Bih)((1 + Bih)τ − 1) + (1 + Bih)

7A(2) + 16A(3)

2h
,

0 = εPe

(
h

(
75 + 19Bih

48
τt + 19

72
A

(2)
t + 7

12
A

(3)
t

)
+ 83 + 20Bih

48
qτx + 91q

352
A(2)

x

)

+ εPe

(
51q

88
A(3)

x + 31qx

64
(τ − 1) − 17qx

6336
A(2) + 43qx

3168
A(3) +

(
5

12
qhx − 21

64
hqx

)
Biτ

)

+ 7

2h
((1 + Bih)τ − 1) + 6A(2) + 13A(3)

2h
,

0 = εPe

(
h

(
32 + 8Bih

9
τt + 7

12
A

(2)
t + 128

99
A

(3)
t

)
+ 2107 + 501Bih

528
qτx + 51q

88
A(2)

x

)

+ εPe

(
745q

572
A(3)

x + 1121qx

1056
(τ−1)− 5qx

288
A(2) + 49qx

10296
A(3) + 1002qhx −793hqx

1056
Biτ

)

+ 8

h
((1 + Bih)τ − 1) + 13

2h
A(2) + 128

9h
A(3).

The above three equations together with (17) and (21) constitute the TK1[3] model.
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